PINCH in the Cellular Stress Response to Tau-Hyperphosphorylation
نویسندگان
چکیده
منابع مشابه
PINCH in the Cellular Stress Response to Tau-Hyperphosphorylation
Particularly interesting new cysteine- histidine- rich protein (PINCH) is an adaptor protein that our data have shown is required for neurite extension under stressful conditions. Our previous studies also report that PINCH is recalled by neurons showing decreased levels of synaptodendritic signaling proteins such as MAP2 or synaptophysin in the brains of human immunodeficiency virus (HIV) pati...
متن کاملMitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxid...
متن کاملHyperphosphorylation-Induced Tau Oligomers
In normal adult brain the microtubule associated protein (MAP) tau contains 2-3 phosphates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold hyperphosphorylated. The abnormally ...
متن کاملZinc Binding Directly Regulates Tau Toxicity Independent of Tau Hyperphosphorylation
Tau hyperphosphorylation is thought to underlie tauopathy. Working in a Drosophila tauopathy model expressing a human Tau mutant (hTauR406W, or Tau(∗)), we show that zinc contributes to the development of Tau toxicity through two independent actions: by increasing Tau phosphorylation and, more significantly, by directly binding to Tau. Elimination of zinc binding through amino acid substitution...
متن کاملThe Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0058232